Chapter 10

Rotation



10.2 The Rotational Variables -

Arigid body is a body that can rotate _ C-:" This line is part
with all its parts locked together and Rotation - /~ Body P
without any change in its shape. B of the body and

perpendicular to
A fixed axis means that the rotation the rotation axis.
occurs about an axis that does not move. g _

- ~ Reference line
)
0 g

Fig. 10-2 A rigid body of arbitrary shape
in pure rotation about the z axis of a coordi-
nate system. The position of the reference
line with respect to the rigid body 1s arbitrary,
but it 1s perpendicular to the rotation axis. It
is fixed in the body and rotates with the body.

Figure skater Sasha Cohen in motion of pure rotation
about a vertical axis. (Elsa/Getty Images, Inc.)



10.2 The Rotational Variables: Angular Position

The body has rotated )
counterclockwise Al =— (radian ITIEEiSllTE).
Y by angle 6. This is the I

positive direction.

Here s is the length of a circular arc
that extends from the x axis (the zero
angular position) to the reference line,
and r is the radius of the circle.

Rotation . . . .
axis An angle defined in this way is
This dot means that measured in radians (rad).

the rotation axis is
out toward you.

Fig. 10-3 The rotating rigid body of Fig. _ 27T

10-2 in cross section, viewed from above. [ rev = 360° = — 27]- rad -
The plane of the cross section 1s perpendic- F

ular to the rotation axis, which now extends

out of the page, toward you. In this position 1 rad = 57.3° = 0.159 rev,

of the body, the reference line makes an an-
gle 6 with the x axis.



10.2 The Rotational Variables: Angular Displacement

If a body rotates about the rotation axis as
in Fig. 10-4, changing the angular position
of the reference line from 6, to ©,, the
body undergoes an angular displacement
A© given by:

AH: Hg_ 6"1.

An angular displacement in the
counterclockwise direction is positive,
and one in the clockwise direction is
negative.

y

Reference line

This change in
the angle is

the angular
Atf, displacement
of the body
during this time
change.

X

Rotation axis

Fig. 10-4 The reference line of the rigid
body of Figs. 10-2 and 10-3 1s at angular po-
sition #, at time #; and at angular position 6
at a later time t,. The quantity Af (= ¢, — 6,)
is the angular displacement that occurs dur-
ing the interval A7 (= t, — ;). The body it-
self 1s not shown,



10.2 The Rotational Variables: Angular Velocity

« Suppose that our rotating body is at angular
position 6, at time t; and at angular position
O, at time t,. Then the average angular
velocity of the body in the time interval t from
t, to t, is defined to be:

6~ 6, _ A0

fz—fl AI,

Wayeg —

» The instantaneous angular velocity w is the
limit of the ratio as At approaches zero.

© T A0 Af dt

Reference line

This change in
the angle is

the angular
Aty displacement
of the body
during this time
change.

X

Rotation axis

Fig. 10-4 The reference line of the rigid
body of Figs. 10-2 and 10-3 1s at angular po-
sition ¢, at time ¢; and at angular position 6
at a later time t,. The quantity A6 (= 6, — #,)
is the angular displacement that occurs dur-
ing the interval At (= t, — t;). The body it-
self is not shown.



10.2 The Rotational Variables: Angular Acceleration

If the angular velocity of a rotating body is not
constant, then the body has an angular
acceleration.

If w, and w, are the angular velocities at times t,
and t,, respectively, then the average angular
acceleration of the rotating body in the interval
from t, to t, is defined as:

Wy — W, Aw
'Tavg - - 3
rz _ Tl .&f
The instantaneous angular acceleration a, is the
limit of this quantity as At approaches zero.

~ lim Aw B dw
“« Ar—0 At dt

These relations hold for every particle of that
body. The unit of angular acceleration is (rad/s?).

a, is the tangential
component of
acceleration 4 and is
parallel to the linear
velocity v.

a, is the radial component,
perpendicular to v.



Example

Fig. 10-5

|R0tati0n axis
! Reference
line

—-Zero
angular

position
The angular position

(@ of the disk is the angle
between these two lines.

This is a plot of the angle
0 (rad) of the disk versus time.

The disk in Fig. 10-54 is rotating about its central axis like a
merry-go-round. The angular position #(f) of a reference
line on the disk is given by

§ = —1.00 — 0.600¢ + 0.250¢2, (10-9)

with ¢ in seconds, # in radians, and the zero angular position
as indicated in the figure.

(a) Graph the angular position of the disk versus time
fromt = —3.0stos = 5.4 s. Sketch the disk and its angular
position reference line at t = —2.0s, 0s, and 4.0s, and
when the curve crosses the f axis.

Calculations: To sketch the disk and its reference line at a
particular time, we need to determine # for that time. To do
so, we substitute the time into Eq. 10-9. For r = —2.0 s, we get

6= —1.00 — (0.600)(—2.0) + (0.250)(—2.0)?

360°
2qrrad

= 1.2rad = 1.2 rad = 69°.

This means that at r = —2.0 s the reference line on the disk
is rotated counterclockwise from the zero position by
1.2 rad =69° (counterclockwise because 6 is positive).
Sketch 1 in Fig. 10-5b shows this position of the reference
line.

Similarly, for t = 0, we find # = —1.00 rad = —57°, which
means that the reference line is rotated clockwise from the
zero angular position by 1.0 rad, or 57°, as shown in sketch 3.
For t = 4.0, we find # = 0.60 rad = 34" (sketch 5). Drawing
sketches for when the curve crosses the 7 axis is easy, because
then #=0 and the reference line is momentarily aligned
with the zero angular position (sketches 2 and 4).






Example

|Rc:-tati0n axis Fig. 10-5
' Reference

line

—-ZLero
angular
position
The angular position
(@ of the disk is the angle
between these two lines.

This is a plot of the angular
w (rad/s)  velocity of the disk versus time.

2
0 t(s)
. /
-2 0 2 4 6
negative @ Zero positive @

(c)

(c) Graph the angular velocity w of the disk versus time from
t= —3.0s to t = 6.0s. Sketch the disk and indicate the direc-
tion of turning and the sign of watt = —2.0 5.4.0 s, and £,
Calculations: To sketch the disk at r = —2.0 s, we substi-
tute that value into Eq. 10-11, obtaining

w = —1.6 rad/s. (Answer)

The minus sign here tells us that at r = —2.0 s, the disk is
turning clockwise (the left-hand sketch in Fig. 10-5¢).
Substituting t = 4.0 sinto Eq. 10-11 gives us

w = 1.4 rad/s. (Answer)

The implied plus sign tells us that now the disk is turning
counterclockwise (the righthand sketch in Fig. 10-5¢).

For 1., we already know that d#/dr = 0. So, we must
also have w = 0. That is, the disk momentarily stops when
the reference line reaches the minimum value of ¢ in Fig.
10-5b, as suggested by the center sketch in Fig. 10-5¢. On the
graph, this momentary stop is the zero point where the plot
changes from the negative clockwise motion to the positive
counterclockwise motion.

(d) Use the results in parts (a) through (c) to describe the

motion of the disk from¢= —3.0stof = 6.0s.
Description: When we first observe the disk at r = —3.0 s, it

has a positive angular position and is turning clockwise but
slowing. It stops at angular position # = —1.36 rad and then
begins to turn counterclockwise, with its angular position
eventually becoming positive again.



Example: Angular Velocity and Acceleration

A child’s top is spun with angular acceleration
a = 51 — 4,

with 7 in seconds and a in radians per second-squared. At
t = 0, the top has angular velocity 5 rad/s, and a reference
line on it is at angular position # = 2 rad.

(a) Obtain an expression for the angular velocity w(¢) of the
top. That is, find an expression that explicitly indicates how the
angular velocity depends on time. (We can tell that there is
such a dependence because the top is undergoing an angular
acceleration, which means that its angular velocity is changing.)

Calculations: Equation 10-8 tells us
dw = «a dt,

SO Jdm—]adf

From this we find

w = [(5:3 —4)dt=2x* -4+ C.

To evaluate the constant of integration C, we note that w = 5
rad/s at t = (. Substituting these values in our expression for
w yields

Sradls=0—-0+ C,
so C = Srad/s. Then

w = %r‘* - 22+ 5. (Answer)

(b) Obtain an expression for the angular position () of the
top.

Calculations: Since Eq. 10-6 tells us that

. df = wdt,
we can write

9=mezjgﬁ—m?+®m

_ 1.5 _ 2.3
=5 -+ 5+ C

— 1.5 _ 2.3
= Ef S't + 5t + 2.. (Answer)

where C" has been evaluated by noting that # = 2rad att = 0.



10.3: Are Angular Quantities Vectors?

Z Z Z

Axis Axis Axis

\ i@
Y ®
This right-hand rule
establishes the
direction of the (a) (b) (¢)
angular velocity
vector.

Fig. 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the
spindle. (b) The angular velocity of the rotating record can be represented by the vector @,
lying along the axis and pointing down, as shown. (¢) We establish the direction of the an-
gular velocity vector as downward by using a right-hand rule. When the fingers of the right
hand curl around the record and point the way it is moving, the extended thumb points in
the direction of @.



10.4: Rotation with Constant Angular Acceleration

TABLE 10-1

Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Missing Angular
Number Equation Variable Equation
(2-11) V=Vt at X=X i - 0=+ af
(2-15) X=Xy =l + %arz y (0 0—0=aof + %mf‘rI
(2-16) vt = vk + 2a(x - x) r i o = of + 2a(0 - )
(217) X = Xo =10+ )t ( 0 b - 6= + o)
(2-18) Y= Xg=vt- %m2 Vo () f— b= wf - %m‘z

Just as in the basic equations for constant linear acceleration, the basic
equations for constant angular acceleration can be derived in a similar
manner. The constant angular acceleration equations are similar to the
constant linear acceleration equations.



Example: Constant Angular Acceleration

Fig. 10-8 WE‘ measure rotation by using  (b) Describe the grindstone’s rotation between t = 0 and
this reference line. t=32s.
Clockwise = negative
Counterclockwise = positive Description: The wheel is initially rotating in the negative
P (clockwise) direction with angular velocity w, = 4.6 rad/s,
/ \ but its angular acceleration a is positive.
\ o AXS
| ‘Ti‘ Zero angular The initial opposite signs of angular velocity and angular
,—f"‘f £ | position acceleration means that the wheel slows in its rotation in
\ the negative direction, stops, and then reverses to rotate
_ Reference in the positive direction.
o line

A grindstone (Fig. 10-8) rotates at constant angular acceler- After the reference line comes back through its initial

ation a = 0.35 rad/s>. At time ¢ = 0, it has an angular veloc- orientation of 8 = 0, the wheel turns an additional 5.0 rev
ity of wy = —4.6 rad/s and a reference line on it is horizon-  py time t =32 s.

tal, at the angular position ¢, = 0.
(a) At what time after 7 = 0 is the reference line at the an-  (C) At what time t does the grindstone momentarily stop?

gular position ¢ = 5.0 rev?
Calculation: With w = 0, we solve for the corresponding
The angular acceleration is constant, so we can use time t.

the rotation equation: . 1 .2 _
0 — b = wt + jat”, W — Wy 0 — (—4.6 rad/s)

f = = > =135
Substituting known values and setting 6, =0 and Y 0.35 rad/s-
6 = 5.0 rev =10p rad give us

07 rad = (—4.6 rads)t + 5(0.35 rad )%

Solving this quadratic equation for t, we find t =32 s.



Example: Constant Angular Acceleration
Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating
cylinder found in amusement parks), you spot a passenger
in acute distress and decrease the angular velocity of the
cylinder from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant
angular acceleration. (The passenger is obviously more of a
“translation person” than a “rotation person.”) ==

(a) What is the constant angular acceleration during this
decrease in angular speed?

KEY IDEA

Because the cylinder’s angular acceleration is constant, we
can relate it to the angular velocity and angular displace-
ment via the basic equations for constant angular accelera-
tion (Eqgs. 10-12 and 10-13).

Calculations: The initial angular velocity i w,=3.40
rad/s, the angular displacement is # — ¢, = 20.0 rev, and the
angular velocity at the end of that displacement is w = 2.00
rad/s. But we do not know the angular acceleration « and
time ¢, which are in both basic equations,

To eliminate the unknown #, we use Eq. 10-12 to write
W~ Wy
.

I =
which we then substitute into Eq. 10-13 to write

— _ 2
9—%=@{”a”q+%4fifﬂ)

Solving for a, substituting known data, and converting 20
rev to 125.7 rad, we find

o' -0 _ (200radls) ~ (340 radls)?
20— 6y) 2(125.7 rad)
= —0.0301 rad/s?. (Answer)

(b) How much time did the speed decrease take?

Calculation: Now that we know a, we can use Eq. 10-12 to

solve for t:
W — (UO

- ~ 2.00rad/s — 340 rad/s

a —0.0301 rad/s?
= 46.5s.

(Answer)



10.5: Relating Linear and Angular Variables

« If areference line on a rigid body rotates through an angle g, a point within the
body at a position r from the rotation axis moves a distance s along a circular
arc, where s is given by:

s = Or (radian measure).

|

 Differentiating the above equation with respect to time -- with r held constant --
leads to:

vV = wr (radian measure)

« The period of revolution T for the motion of each point and for the rigid body

itself is given by: D

V

« Substituting for v we find also that:
27

I =—— (radian measure)
1)



10.5: Relating Linear and Angular Variables

The velocity vector is The acceleration always
always tangent to this has a radial (centripetal)
¥ circle around the ¥ component and may have
Circle - rotation axis. a tangential component.
traveled by P
&
P P
T a,
X X
Rotation
axis
(a) (5)

Differentiating the velocity relation with respect to time—again with r held constant—

o _

Here, a, = dw/dt

Note that dv/dt = &, ,represents only the part of the linear acceleration that is responsible
for changes in the magnitude v of the linear velocity. Like v, that part of the linear
acceleration is tangent to the path of the point in question.

The radial part of the acceleration is the centripetal acceleration given by:




Example

Consider an induction roller coaster (which can be accelerated
by magnetic forces even on a horizontal track). Each passenger
is to leave the loading point with acceleration g along the
horizontal track.

That first section of track forms a circular arc (Fig. 10-10), so
that the passenger also experiences a centripetal acceleration.
As the passenger accelerates along the arc, the magnitude of
this centripetal acceleration increases alarmingly. When the
magnitude a of the net acceleration reaches 4g at some point P
and angle ©; along the arc, the passenger moves in a straight
line, along a tangent to the arc.

(&) What angle ©; should the arc subtend so that a = 4g at
point P?

Calculations:

Substituting w,= 0, and ©,= 0, and we find:
Lﬂz — LU.% + 2&(9 - 9{]}.

,  2a0
W = .
F
;
a, = wr
But,
. — "
which gives: a, ‘Lﬂ!ﬁ‘

Along here, the
passenger has
both tangential
and radial
accelerations.

P
-— 13\
\
A
™~ ___ :\
Along here, the Loading
point

passenger has
only tangential
acceleration.

This leads us to a total acceleration:
\Va? + a’.

Substituting for a,, and solving for © leads to:

ﬂ:

72
a
- 4 - l

az

-1

When a reaches the design value of 4g,
angle is the angle © ,, . Substituting a = 4g,
© =0 ,, and a,= g, we find:

(4g)

g?

Op = 3 — 1 =194 rad = 111°.



Example, cont.

(b) What is the magnitude a of the passenger’s net
acceleration at point P and after point P?

Reasoning: At P, a has the design value of 4g. Just
after P is reached, the passenger moves in a straight
line and no longer has centripetal acceleration.

Thus, the passenger has only the acceleration
magnitude g along the track.

Hence, a = 4g at P and a = g after P. (Answer)

Roller-coaster headache can occur when a
passenger’s head undergoes an abrupt change in
acceleration, with the acceleration magnitude large
before or after the change.

The reason is that the change can cause the brain to
move relative to the skull, tearing the veins that
bridge the brain and skull. Our design to increase the
acceleration from g to 49 along the path to P might
harm the passenger, but the abrupt change in

acceleration as the passenger passes through point P

is more likely to cause roller-coaster headache.

= = ——

Along here, the
passenger has
only tangential

acceleration.

Along here, the
passenger has
both tangential
and radial
accelerations.

\

&
Loading
point



10.6: Kinetic Energy of Rotation

For an extended rotating rigid body, treat the body as a collection of particles with
different speeds, and add up the kinetic energies of all the particles to find the
total kinetic energy of the body:

m. is the mass of the it particle and v; is its speed).
| |

The quantity in parentheses on the right side is called the rotational inertia (or
moment of inertia) | of the body with respect to the axis of rotation. It is a constant

for a particular rigid body and a particular rotation axis which must always be
specified.

Therefore,

1= bt = K= o)




10.7: Calculating the Rotational Inertia
If a rigid body consists of a great many adjacent particles (it is continuous, like a Frisbee), we

consider an integral and define the rotational inertia of the body as:

(rotational inertia, continuous body).

I= 1 rPdm

Axis

Some Rotational Inertias

Hoop about Annular cylinder Solid cylinder
' central axis Vi (or ring) about (or disk) about
n central axis

’ central axis \
, /l 1‘/

I= MR? (a) I= $M(R} + R3) (6) I= 1MR2 (e)
Axis Axis AXis
Solid cylinder Thin rod about SRR Solid sphere
(or disk) about axis through center about any
central diameter X perpendicular to diameter
/ length 9R
| | L ‘/I L
R \/ \ Yy |
I=iMR? +  ML? ) I= $ML? () = 3MR? n
Axis Axis Axis
e — Thin P4 Hoop about any Slab about
spherical shell I\X diameter perpendicular
e . Z f 1 .
about any ' _ axis through
2R diameter v ‘ ,vy"l center
@ b
&
T, B ”‘---a-ll
(&) I= IMR? (k) I=5M(a? + b2) ()

I= 3MR?



10.7: Calculating the Rotational Inertia

Solidzsphege about diameter Flat plate about perpendicular axis
[=5MR” I1=5M(d+b)

¢

g

Thin rod al;oul center Thin ring or hollow cylinder
1= EML? about its axis
1= MR
Q Hollow spherical shell about diameter
I=%MR?
Q Flat plate about central axis
I=}5Md

' L™ Thin rod about end
V 1= Lmr?

Disk or solid cylinder
about its axis
I=+MR?




10.7: Calculating the Rotational Inertia
Parallel Axis Theorem:

If h is a perpendicular distance between a given axis and the axis through the center of
mass (these two axes being parallel).Then the rotational inertia | about the given axis is:

[=1,,+ Mh?

(parallel-axis theorem)

Rotation axis
through P\

l[J

r

dm

y-b

h
b

com i

X—

0

through

Rotation axis

center of mass

* Let O be the center of mass (and also the origin of the coordinate
system) of the arbitrarily shaped body shown in cross section.

» Consider an axis through O perpendicular to the plane of the figure,
and another axis through point P parallel to the first axis.

* Let the x and y coordinates of P be a and b.

* Let dm be a mass element with the general coordinates x and y. The
rotational inertia of the body about the axis through P is:

[ = Jrz dm = J[(.t’ —a)Y + (y — b)z] dm

= J (x> + v dm — 2a J xdm — 2b Jm dm + J(az + b?) dm

* But x? + y2 = R?, where R is the distance from O to dm, the first
integral is simply |, the rotational inertia of the body about an axis
through its center of mass.

* The last term in is Mh?, where M is the body’s total mass.



Example: Rotational Inertia

Figure 10-13a shows a rigid body consisting of two particles of (b) Whatis the rotational inertia / of the body about an axis

mass m connected by a rod of length L and negligible mass. through the left end of the rod and parallel to the first axis
: . L . (Fig. 10-13b)?
(a) What is the rotational inertia Jpr, about an axis through the - First technique: We calculate / as in part (a), except here the

center of mass, perpendicular to the rod as shown? perpendicular distance r; is zero for the particle on the left and
Rotation axi : : ,
cilfrﬁ;ﬁx . L for the partlcle on the right. Now Eq. 10-33 gives us
callisdn it = m(O)2 + mL*=ml> (Answer)
m m
) == O Second techmque: Because we already know [, about
| 4 i | an axis through the center of mass and because the axis here

is parallel to that “com axis,” we can apply the parallel-axis
(@ Here the rotation axis is through the com. theorem (Eq. 10-36). We find

I = Loy + MW =3mL? + (2m)(L)?

| —— Rotation axis through
end of rod )
_ m = mlL-. (Answer)
Am c?’n o
—]
b : )
(%) Here it has been shifted from the com

without changing the orientation. We
can use the parallel-axis theorem.

Calculations: For the two particles, each at perpendicular
distance 5 L from the rotation axis, we have

[ = myr}=(m)GLY + (m)SL)

=3 mLz. (Answer)



Example: Rotational Inertia

This is the full rod.
We want its rotational

~nied inertia.
axis
/rmm /FM
— > —x
L L
| 2 2 !
First, pick any tiny element
Rotation and write its rotational
axis inertia as x2 dm.
d.
|
—_— m —x
<X -\dm

rigurc 1u-14 sinows d tll, Uliorin rod O mdss (v diid 1cngin
L,on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the
perpendicular rotation axis through the center?

KEY IDEAS

(1) Because the rod is uniform, its center of mass is at its cen-
ter. Therefore, we are looking for /. (2) Because the rod is
a continuous object, we must use the integral of Eq. 10-35,

I = j rrdm,

to find the rotational inertia.

(10-38)

Calculations: We want to integrate with respect to coordi-

nate x (not mass m as indicated in the integral), so we must
relate the mass dm of an element of the rod to its length dx
along the rod. (Such an element is shown in Fig. 10-14.)
Because the rod is uniform, the ratio of mass to length is the
same for all the elements and for the rod as a whole. Thus,
we can write

rod’s mass M
rod’s length L

element’s mass dm

element’s length dx

M
or dm = T dx.

We can now substitute this result for dm and x for r in
Eq. 10-38. Then we integrate from end to end of the rod
(from x = —L/2 to x = L/2) to include all the elements.
We find

x=+L/2 M
= f x?2 (—) dx
x=—L72 L

L (T (]

= sMIL2 (Answer)



Example: Rotational Inertia

This s the full rod.
We want its rotational
Inertia.

Fig. 10-14

Rotation
axis

/T VAR

L

2

First, pick any tiny element
Rotation  and write its rotational
axis inertia as x2 dm.

— &

— X | —X
X *\dm

LG o]

Then, using integration, add up
the rotational inertias for all of
the elements, from leftmost to
rightmost.

Rotation
axis

—= X B—x

__L _L
x=—-— x=—

2 2
Leftmost Rightmost

(b) What is the rod’s rotational inertia / about a new
rotation axis that is perpendicular to the rod and through
the left end?

KEY IDEAS

We can find 7 by shifting the origin of the x axis to the left end
of the rod and then integrating from x = Otox = L. However,

here we shall use a more powerful (and easier) technique by
applying the parallel-axis theorem (Eq. 10-36), in which we
shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod’s end so that it
is parallel to the axis through the center of mass, then we
can use the parallel-axis theorem (Eq. 10-36). We know
from part (a) that [, is%M L2 From Fig. 10-14, the perpen-
dicular distance h between the new rotation axis and the
center of mass is %L. Equation 10-36 then gives us

[ = Loy + M = 5 ML + (M) L’
=ML (Answer)
Actually, this result holds for any axis through the left

or right end that 1s perpendicular to the rod, whether it is
parallel to the axis shown in Fig. 10-14 or not.



Example: Rotational KE

Large machine components that undergo prolonged. high-
speed rotation are first examined for the possibility of fail-
ure in a spin test system. In this system, a component is spun
up (brought up to high speed) while inside a cylindrical
arrangement of lead bricks and containment liner, all within
a steel shell that is closed by a lid clamped into place. If the
rotation causes the component to shatter, the soft lead
bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin
testing a sample of a solid steel rotor (a disk) of mass M = 272
kg and radius R = 38.0 cm. When the sample reached an an-
gular speed w of 14 000 rev/min, the test engineers heard a
dull thump from the test system, which was located one floor
down and one room over from them. Investigating, they found
that lead bricks had been thrown out in the hallway leading to
the test room, a door to the room had been hurled into the ad-
jacent parking lot, one lead brick had shot from the test site
through the wall of a neighbor’s kitchen, the structural beams
of the test building had been damaged, the concrete floor be-
neath the spin chamber had been shoved downward by about
0.5 cm. and the 900 kg lid had been blown upward through the
ceiling and had then crashed back onto the test equipment
(Fig. 10-15). The exploding pieces had not penetrated the
room of the test engineers only by luck.

How much energy was released in the explosion of the
rotor? = =2

KEY IDEA

The released energy was equal to the rotational kKinetic en-
ergy K of the rotor just as it reached the angular speed of
14 000 rev/min.

Fig. 10-15 Some of the destruction caused by the explosion of a
rapidly rotating steel disk. (Courtesy Test Devices, Inc.)

Calculations: We can find K with Eq. 10-34 (K = %Iuﬁ). but
first we need an expression for the rotational inertia 1.
Because the rotor was a disk that rotated like a merry-
go-round, [ is given by the expression in Table 10-2c
(I = LMR?).Thus, we have

I =1MR? = 1(272 kg)(0.38 m)? = 19.64 kg-m?>.
The angular speed of the rotor was
w = (14 000 rev/min)(27 rad/rev)(
= 1.466 X 10° rad/s.

lrnin)
60 s

Now we can use Eq. 10-34 to write
K =1lo* = 1(19.64 kg-m?)(1.466 X 10° rad/s)?
=2.1 % 107J.

Being near this explosion was quite dangerous.

(Answer)



10.8: Torque

Line of __
action of F

of F
The torque due to this force You calculate the same torque
causes rotation around this But actua”y only the fangenﬁaf by using this moment arm
axis (which extends out component of the force causes distance and the full force
toward you). the rotation. magnitude.

(a) () (c)

The ability of a force F to rotate the body depends on both the magnitude of its tangential
component F, and also on just how far from O, the pivot point, the force is applied.

To include both these factors, a quantity called torque t is defined as:
7= (r)(Fsin &). or, T=(r)(Fsin¢)=rF,

where 1, is called the moment arm of F. - = (F’ Sh (‘-b)(F) =T, F,



10.8: Torque

« Torque ris the rotational analog of force, and

results from the application of one or more forces.

— Torque is relative to a chosen rotation axis.
— Torque depends on

* The distance from the rotation axis to the
force
application point.

« The magnitude of the force F

* The orientation of the force relative to the
displacement r from axis to force
application point: - — rF sin &

The same force is applied
at different angles.

— 7 : : = =
Torque = %‘e“teS‘ wﬁhen F is no longer perpendicular F is parallel to 7.
is perpendicular to 7. toft 8

Torque decreases when F Torque is zero when

F
(a) (b)

The same force is applied
at different points on the
wrench.

Closest to O, 7 is smallest.

(a)

Farther away, 7 becomes larger.

o

F

(b)

Farthest away, 7 becomes greatest.

(©



Clicker question

The forces in the figures all have the same magnitude.
Which force produces zero torque?

The force in figure (a)

The force in figure (b)
The force in figure (c) @

o0 w >

All of the forces produce
torque

(b)




10.9: Newton’s 2"d Law for Rotation The torque due to the tangential
component of the force causes

Fr = mda, an angular acceleration around
the rotation axis.

y

7= F,r = ma,r.

7=m(ar)r = (mr?)a.

Rotation axis

Fig. 10-17 A simple rigid body, free to
rotate about an axis through O, consists of
a particle of mass m fastened to the end of
T=la a rod of length r and negligible mass. An
applied force F causes the body to rotate.

For more than one force, we can generalize:

Thet — la (radian measure)



Example: Newton’s 2" Law in Rotational Motion

Figure 10-18a shows a uniform disk. with mass M = 2.5 kg The torque from the tension force, T, is -RT, negative because the
and radius R = 20 cm. mounted on a fixed horizontal axle. torque rotates the disk clockwise from rest. The rotational inertia |
A block with mass m = 1.2 kg hangs from a massless cord that of the disk is %2 MR2. But 21 = la = -RT = 1/2 MR?a.

is wrapped around the rim of the disk. Find the acceleration of

the falling block, the angular acceleration of the disk, and the > . .
. ) “ . . .. block and the (tangential) linear acceleration a, of the rim of the
tension in the cord. The cord does not slip, and there is no fric- i oo equal

tion at the axle. We now have: T=-1/2 Ma.
The torque due to the
cord's pull on the rim

Because the cord does not slip, the linear acceleration a of the

Combining results:

) 7 Causesan angular We then find T:
M I acceleration of the disk. P 2m _ 08 mi) (2)(1.2 kg)
o | M+ 2m 25kg + (2)(1.2kg)
- = —4.8 m/s%. (Answer)
y A These two forces
? determine the block's The angular acceleration of the disk is:
. (linear) acceleration. T = —'Ma = —1(2.5 kg)(—4.8 m/s?)
m
7 = 6.0 N. (Answer)
¢ We need to relate
L those two Note that the acceleration a of the falling block is less
accelerations. _ —4.8 m/s?
(a) (8) e % = W";]S — _24rad/s (Answer)

Forces on block:
From th,e block’s free body diagram, we can write . than g, and tension T in the cord (=6.0 N) is less than the
Newton’s second law for components along a vertical grayitational force on the hanging block ( mg =11.8 N).
yaxisas: T—mg=ma




10.10: Work and Rotational Kinetic Energy

AK = Kf 11 W = IUJ2 W (work-kinetic energy theorem)

%
W= J‘ 7df  (work,rotation about fixed axis),
f;

where 1 is the torque doing the work W, and ©, and ©; are the body’s angular
positions before and after the work is done, respectively. When 1 is constant,

W=17(6,— 6) (work, constant torque)

The rate at which the work is done is the power,
dW

P=—=170 (power, rotation about fixed axis)

dt



10.10: Work and Rotational Kinetic Energy

TABLE 10-3

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)

Pure Rotation (Fixed Axis)

Position
Velocity

Acceleration
Mass

Newton's second law
Work

Kinetic energy

Power (constant force)

Work —kinetic energy theorem

X
v = dx/dt
a = dvldt
m

Foot = ma
W= [Fdx
K = m/
P=Fy
W= AK

Angular position 0

Angular velocity w = dbldt
Angular acceleration a = dwldt
Rotational inertia [

Newton’s second law Toet = 100
Work W=[rdf
Kinetic energy K = 31o’
Power (constant torque) P =10

Work —kinetic energy theorem W = AK




Example: Work, Rotational KE, Torque

Let the disk in Fig. 10-18 start from rest at time # = 0 and
also let the tension in the massless cord be 6.0 N and the an-
gular acceleration of the disk be —24 rad/s?>. What is its rota-
tional kinetic energy K att = 2.5s?

Calculations: Because we want @ and know a and «, (= 0),
we use Eq. 10-12:

w=awy,+ at =0+ at = at.
Substituting @ = arand I = 3 MR? into Eq. 10-34, we find
K = 31e? = 5GMR?)(at)? = sM(Rar)?
= 1(2.5 kg)[(0.20 m)(—24 rad/s?)(2.5 s) ]2

= 90 J. (Answer)

M

We can also get this answer by finding the disk’s kinetic
energy from the work done on the disk.

Calculations: First, we relate the change in the Kinetic
energy of the disk to the net work W done on the disk, using
the work—kinetic energy theorem of Eq. 10-52 (Ky— K; = W).
With K substituted for Kyand 0 for K, we get

K=K+W=0+W=W. (10-60)

Next we want to find the work W. We can relate W to
the torques acting on the disk with Eq. 10-33 or 10-54. The
only torque causing angular acceleration and doing work is
the torque due to force T on the disk from the cord, which is
equal to —TR. Because a is constant, this torque also must

be constant. Thus, we can use Eq. 10-54 to write
W=1(6—6)=—TR(6;,— 6). (10-61)

Because a is constant, we can use Eq. 10-13 to find
6 — 6;. With @; = 0, we have

0 — 6, = wit + %afrz =0+ %m‘z = %mz_
Now we substitute this into Eq. 10-61 and then substitute the

result into Eq. 10-60. Inserting the given values 7= 6.0 N
and a = —24 rad/s*, we have

K=W=~TR(6;~ 6) = ~TRGer’) = —TRar’
= —3(6.0 N)(0.20 m)(—24 rad/s?)(2.5 s)?

=90 J. (Answer)



